A quantile approach to the power transformed location-scale model
نویسنده
چکیده
The burgeoning growth of health care spending has become a major concern to policy makers, making the modeling of health care expenditure valuable in their decisionmaking processes. The challenges of health care expenditure analysis are two-fold: the exceptional skewness of its distribution as the top 5% of the population accounted for almost half of all spending and its heteroscedasticity. To address these concerns, the quantile regression model with power transformation has been employed, but at a price of the model complexity and analysis cost. In this article, we introduce a simpler quantile approach to the analysis of expenditure data by employing the location–scale model with an unknown link function to accommodate the heteroscedastic data with non-ignorable outliers. Specifically, in our approach a link function does not depend on quantiles; yet, it effectively fits the data as the slope coefficient depends on the quantiles. This parsimonious feature of our model helps us conduct a more intuitive and easily understood analysis for the whole distribution with fewer computational steps. Thus, it can be more widely applicable in practice. Additionally, simulation studies are conducted to investigate the model performance compared to other competing models. Analysis of the 2007 Medical Expenditure Panel Survey data using our model shows that aging and self-rated health tend to drive up costs. However, uninsured persons do not contribute to the high health cost. These findings suggest that careful monitoring of elderly’s health status and a more aggressive preventive medicare system may contribute to slow down the explosion of medical costs. © 2013 Elsevier B.V. All rights reserved.
منابع مشابه
Firm Specific Risk and Return: Quantile Regression Application
The present study aims at investigating the relationship between firm specific risk and stock return using cross-sectional quantile regression. In order to study the power of firm specific risk in explaining cross-sectional return, a combination of Fama-Macbeth (1973) model and quantile regression is used. To this aim, a sample of 270 firms listed in Tehran Stock Exchange during 1999-2010 was i...
متن کاملPower Prior Elicitation in Bayesian Quantile Regression
We address a quantile dependent prior for Bayesian quantile regression. We extend the idea of the power prior distribution in Bayesian quantile regression by employing the likelihood function that is based on a location-scale mixture representation of the asymmetric Laplace distribution. The propriety of the power prior is one of the critical issues in Bayesian analysis. Thus, we discuss the pr...
متن کاملSemi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses
Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...
متن کاملLocation optimization of agricultural residues-based biomass plant using Z-number DEA
Co-firing biomass plants are of extensive demand due to utilization of both agricultural residues (main) and natural gas (stand-by). Researchers have shown that one strategic decision in establishment of agricultural residues based plants, is location optimization problem. Moreover, mismatch between agricultural lands and biomass plants can lead to high transportation costs and related carbon d...
متن کاملEstimation of a quantile in a mixture model of exponential distributions with unknown location and scale parameter
Estimation of a quantile in a mixture model of exponential distributions is considered. For quadratic loss and specified extreme quantiles, better estimators than the best affine equivariant procedure are established. In particular, improved estimators for a quantile of an Exponential-Inverse Gaussian distribution and the multivariate Lomax distribution with unknown location and scale parameter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 63 شماره
صفحات -
تاریخ انتشار 2013